Engineering in an Age of Limits

Discusses the role of engineers as society enters an Age of Limits — particularly with oil supplies.

Category Archives: Systems Engineering

18. Solving the Wrong Problem

Engineering in an Age of Limits

Post #18. Solving the Wrong Problem

Phytomass

Engineers did not invent the steam engine — the steam engine invented them.
What will a post-oil society invent?

This is the eighteenth post in the series “Engineering in an Age of Limits”. We are facing limits in natural resources, particularly oil; our finances (money seems to be increasingly disconnected from actual goods and services); and the environment as we continue to dump waste products into the air, the sea and on to land.

We are also facing a transition as the Oil Age comes to an end. This is not the first time that society has faced such a shift. At the beginning of the 18th century the principal source of energy in northern Europe was wood. However the forests were mostly depleted so a new source of energy, coal, had to be developed and exploited. The extraction of coal from underground mines posed new technical challenges particularly with regard to removing the water that flooded those mines. So new technologies, particularly the steam engine, had to be developed. Necessity was indeed the mother of invention. These technological developments led to many changes in society, including the creation of the profession of engineering. The transitions that we are currently experiencing as we look for alternatives to oil are likely to generate equally profound paradigm shifts.

In this blog we consider two questions:

  1. What new paradigms, new ways of looking at the world, will develop, analogous to the development of engineering in the early 18th century; and
  2. How can engineers and other technical professionals help navigate the troubled waters that we are entering?

These posts are published at our Welcome page. We also have a LinkedIn forum that you are welcome to join. 

Trickle Down Phytomass

If I had an hour to solve a problem I’d spend 55 minutes thinking about the problem and 5 minutes thinking about solutions. 

Albert Einstein

Just when you thought that things could not get any worse they get worse.

Most ‘Age of Limits’ discussions revolve around the use of fossil fuels: the coal, oil and gas that was formed from the remains of photosynthetic plants hundreds of millions of years ago. We are both using them up (resource depletion) and also turning them into waste products such as CO2 in the atmosphere and acid in the oceans that are killing the environment. These problems are bad enough, but it turns out that the real concern is to do with the the earth’s inventory of living plant and animal material because that is what nourishes us, either directly or indirectly.

The technical term for this living material is phytomass.

Phytomass is critical to the survival of human beings because all of the food that we eat comes from living organisms. The energy stored in fossil fuels can help us extract and use that food more effectively but it does not create food. A person cannot eat a lump of coal or drink a barrel of oil. Phytomass is also vital because it maintains biodiversity and biochemical recycling.

In her latest essay at Our Finite World Gail Tverberg references the paper Human domination of the biosphere: Rapid discharge of earth-space battery foretells the future of humankind (lead author John R. Schramski). Published in June 2015 the paper compares the earth to a battery that has been trickle-charged for hundreds of millions of years by energy from the sun. The energy has been stored as biomass, some that is living now (mostly as trees) but most of which is stored underground in the form of oil, gas and coal. The authors argue that humanity is rapidly and irreversibly discharging that battery. They compare the earth to a house whose only electrical power comes from a battery. While the battery is charged all is well. But once it is discharged it is no longer possible to live in the house, except in the most rudimentary way.

The paper states, “Living things use photo-synthesis to convert diffuse but reliable sunlight into energy-rich organic compounds, and they use respiration to break down these compounds, release stored energy and do the biological work of living . . . humans also use technological innovations to burn organic chemicals and use this extrametabolic energy to do the additional work of fueling complex socioeconomic activities.” In other words, over a time span of hundreds of millions of years the earth’s battery has been trickle charged by sunlight being converted by plants into biomass. We are now using up that biomass and running down the battery.

With regard to the energy stored in fossil fuels there is nothing new in the above statements — the depletion of these resources is a central element of the Age of Limits thesis. However, what is new to most of us is that it is the energy stored in living biomass that really matters to our survival. After all, humans lived in rough equilibrium with the planet for tends of thousands of years. It was only with the start of the industrial revolution 300 years ago that the balance was thrown badly off kilter.

The paper estimates that the total energy stored in the earth’s current inventory of phytomass is 19 ZJ (zetajoules) and that 2 ZJ of new phytomass is created each year by plants from sunlight. (A zetajoule equals 1021 joules and is roughly half the amount of energy used by humanity per year.) “An input of 2 ZJ/y of photosynthesis maintains a standing stock of 19 ZJ of stored biomass.” In other words, if humanity were to consume phytomass at a rate of 2 ZJ per annum then we would be in balance with nature. But, needless to say, we are not so sensible.

In fact, in addition to irreversibly using fossil fuel resources, humans are also depleting the earth’s store of phytomass. The authors estimate that its value 2,000 years ago was around 35 ZJ but that now, as already noted, it is down to 19 ZJ. Causes for this depletion include deforestation, over-fishing and paving over vegetated landscapes. And the rate at which we are depleting the phytomass is increasing due to population growth and increased use of energy and phytomass per head of population. The authors of the paper calculate that humanity is consuming something like 0.53 ZJ/y more than is being replaced by the trickle down energy from the sun. This number is likely to increase as the population grows and as people strive for a higher material standard of living.

The Wrong Problem

To put it plainly, it looks as if we have been trying to solve the wrong problem. 

Our fundamental challenge is not the conservation of fossil fuel resources, nor is it reducing our impact on the environment. Our fundamental problem is that we are depleting the earth’s inventory of phytomass. Resource and environmental problems are secondary.

The chart shown below is from the journal Nature. The red line shows that startling growth in total energy consumption that has occurred in the last 300 years.

Total Energy Consumption

Based on information such as that shown in the chart the authors of the paper calculate that humanity has round 1,029 years left before the earth’s store of phytomass is exhausted. This sounds bad enough, but it is overly optimistic for the following reasons.

  1. No all phytomass can be consumed — a large proportion of it consists of trees, and we cannot eat wood.
  2. Although we cannot directly consume the energy in fossil fuel (we cannot eat lumps of coal) we still need that energy to extract phytomass energy through activities such as the manufacture of synthetic fertilizers. And, as we have discussed many, many times fossil fuel energy is declining.
  3. Human actions such as the reduction of biodiversity and pollution of the seas and atmosphere will reduce the rate at which phytomass is created.
  4. The earth’s human population (the blue line in the chart) continues to grow, at least in the short and medium term.

Therefore the value of 1,029 years before the store of phytomass is gone is probably wildly optimistic given the trends. Therefore the red line, the total energy consumed by humanity, will grow with it.

The unspoken assumption in most Age of Limits discussions is that if we can somehow control our use of fossil fuels then all will be well and we will be able to maintain our current lifestyle, or something close to it. Based on the insights of this paper such a conclusion is hopelessly naïve. Moreover, non-biological sources of energy such as wind, tidal power or nuclear energy are all essentially immaterial to the central problem — which is that we need phytomass to live; all that these  other energy sources can do is help us create and extract phytomass more effectively, thus ironically bringing about our demise even more quickly.

End Point

Schramski and his colleagues are saying that it is not enough to achieve a balance with our resources and environment — the current balance is unsustainable. We must cut back both the total population and we must drastically reduce our per capita consumption of phytomass. Simply stopping growth is not enough — we need to drastically shrink our presence on this earth because, “Unless phytomass stores stabilize, human civilization is unsustainable”. 

The authors go on to say,  “Living biomass is the energy capital that runs the biosphere and supports the human population and economy. There is an urgent need not only to halt the depletion of this biological capital, but to move as rapidly as possible toward an approximate equilibrium between [photosynthesis] and respiration. There is simply no reserve tank of biomass for plant Earth. The laws of thermodynamics have no mercy. Equilibrium is inhospitable, sterile, and final . . . the laws of thermodynamics offer little room for negotiation.”

I started this post by noting that I ran across the Schrmaski paper at the Finite World site. One of the commenters there, Fast Eddy, showed the following picture and said, “If that paper is correct… this is the future”.

Dead Plant Earth

l’Optimise

Voltaire

Voltaire

The above sub-title comes from Voltaire’s book Candide, a work that I have referred to in previous posts. His satirical writing can be seen as a work of optimism in spite of all the bad things that take place. Therefore, where possible, I will end these posts with a few words of optimism.

Rhino-1

After reading and thinking about the paper Human domination of the biosphere I can think of little to be optimistic about. We will have to drastically cut back on our energy consumption and on our depletion of phytomass. We need to reduce our energy consumption so that it is no more than what trickles down to us from the sun and is then converted to living plant and animal material. But, based on what we see around us, it would appear that the chances of us doing so voluntarily are slim indeed.

This line of thought takes us inexorably back to Voltaire’s Il faut cultiver notre jardin. Live simply, grow your own food and hope for the best. But there is one other conclusion that can be drawn from the above line of reasoning. Maintaining the world’s vegetative cover and diversity of plant and animal life is not just something we ought to do — it is something that is vital to our existence.

Books

Our books, published by Elsevier, include the following titles.

Books from Sutton Technical Books

Advertisements

17. The Red Queen Dilemma

Engineering in an Age of Limits

Post #17. The Red Queen Dilemma

Red Queen in Alice in Wonderland
Engineers did not invent the steam engine — the steam engine invented them.
What will a post-oil society invent?

This is the seventeenth post in the series “Engineering in an Age of Limits”. We are facing limits in natural resources, particularly oil; our finances (money seems to be increasingly disconnected from actual goods and services); and the environment as we continue to dump waste products into the air, the sea and on to land.

We are also facing a transition as the Oil Age comes to an end. This is not the first time that society has faced such a shift. At the beginning of the 18th century the principal source of energy in northern Europe was wood. However the forests were mostly depleted so a new source of energy, coal, had to be developed and exploited. The extraction of coal from underground mines posed new technical challenges particularly with regard to removing the water that flooded those mines. So new technologies, particularly the steam engine, had to be developed. Necessity was indeed the mother of invention. These technological developments led to many changes in society, including the creation of the profession of engineering. The transitions that we are currently experiencing as we look for alternatives to oil are likely to generate equally profound paradigm shifts.

In this blog we consider two questions:

  1. What new paradigms, new ways of looking at the world, will develop, analogous to the development of engineering in the early 18th century; and
  2. How can engineers and other technical professionals help navigate the troubled waters that we are entering?

These posts are published at our Welcome page. We also have a LinkedIn forum that you are welcome to join. 

Productivity Slowdown

Trojan Horse
In last week’s post, Greek Gifts, I suggested that one of the root causes of the on-going Greek economic problems is that the world’s economies are hitting ‘Age of Limits’ barriers. In the post I stated,

Once we realize that our problems are caused by resource and environmental limits that prevent the creation of additional complexity then we may be able to work toward solutions, even though those solutions could well result in a conscious decision to simplify and therefore shrink our industrial systems.

The thinking behind this statement is that societies such as ours solve problems by increasing complexity. But increased complexity requires ever increasing expenditures of energy; if that energy is not available then it is no longer possible to add either complexity or growth. If this theory has merit then what we are seeing in Greece is the reverse effect: reduced affordable energy supplies lead to a simplification of systems which will lead, not to growth, but shrinkage. To repeat the words of Joseph Tainter in his book The Collapse of Complex Societies. 

  1. Growth comes from increased complexity because it is useful in solving problems;
  2. Increased growth and increased energy use go hand in hand — they cannot be separated;
  3. Complexity is not free — there is always a cost;
  4. When the cost/benefit crosses a threshold decline starts; and
  5. Decline is associated with increased simplification (which is generally involuntary).

If this analysis is true then attempting to solve the economic problems of Greece through ever-increasing austerity will simply make a bad problem worse.

Samuelson-Robert-1

Robert Samuelson

This week Robert Samuelson of the Washington Post wrote an editorial “Productivity mysteriously goes bust”. He starts off by saying,

What’s surprising about the disappointing slowdown in productivity is that, by all outward signs, it ought to be booming.What’s especially baffling is that, superficially, outside forces seem to favor faster productivity growth. 

He notes that this slowdown is a world-wide phenomenon and lists some of the reasons that should have caused an increase in productivity. They include,

  1. The Internet;
  2. Activist investors; and
  3. Globalization

He concludes by saying,

The productivity bust is a big story. It’s also a bit of a mystery.

The Red Queen

Red Queen as a symbol of the need for evolution

Faster! Faster!

Actually, there is no “bit of a mystery” — like most economists he does not realize that growth in productivity requires an abundant supply of affordable resources, particularly oil, as illustrated in Lewis Carroll’s famous story Through the Looking-Glass. In it the protagonist, Alice, meets the Red Queen. Suddenly they start running.

Alice never could quite make out, in thinking it over afterwards, how it was that they began: all she remembers is, that they were running hand in hand, and the Queen went so fast that it was all she could do to keep up with her: and still the Queen kept crying ‘Faster! Faster!’ but Alice felt she COULD NOT go faster, though she had not breath left to say so.

The most curious part of the thing was, that the trees and the other things round them never changed their places at all: however fast they went, they never seemed to pass anything. ‘I wonder if all the things move along with us?’ thought poor puzzled Alice. And the Queen seemed to guess her thoughts, for she cried, ‘Faster! Don’t try to talk!’ . . . and still the Queen cried ‘Faster! Faster!’ and dragged her along. ‘Are we nearly there?’ Alice managed to pant out at last.

‘Nearly there!’ the Queen repeated. ‘Why, we passed it ten minutes ago! . . . ‘Faster! Faster!’ And they went so fast that at last they seemed to skim through the air, hardly touching the ground with their feet, till suddenly, just as Alice was getting quite exhausted, they stopped, and she found herself sitting on the ground, breathless and giddy.

The Queen propped her up against a tree, and said kindly, ‘You may rest a little now.’

Alice looked round her in great surprise. ‘Why, I do believe we’ve been under this tree the whole time! Everything’s just as it was!’

‘Of course it is,’ said the Queen, ‘what would you have it?’

‘Well, in OUR country,’ said Alice, still panting a little, ‘you’d generally get to somewhere else—if you ran very fast for a long time, as we’ve been doing.’

‘A slow sort of country!’ said the Queen. ‘Now, HERE, you see, it takes all the running YOU can do, to keep in the same place. 

This image, with Greece being Alice and the Red Queen being Europe, in which they both must run faster and faster just to stay in one place, is compelling — and extends to most other countries in the world. It also provides an  answer to Samuelson’s conundrum. As a society we are spending more and more effort just to maintain what we have, just to stay in one place, there is little or nothing left over for growth. And this predicament (not problem) will only get worse as the world’s ERoEI (Energy Returned on Energy Invested) continues to fall (see Nine Pounds of Gold). 

Which brings us to our second Victorian girl: Goldilocks.

Goldilocks and the Three Bears

Goldilocks and the Three Bears
In Goldilocks is Dead Richard Heinberg compares our plight to that of Goldilocks. She has entered an empty house and sees three bowls of porridge on the table. She tastes them and finds that the first is too hot, the second is too cold but the third is just right. Heinberg uses this story as an analogy for the problems we are facing now. We need a price for oil that is “is not too hot, and not too cold”. If the price of oil is too high then the world economy wilts; if it is too low then oil companies cannot make money on their new, low ERoEI prospects (back to Nine Pounds of Gold).

Heinberg asserts that we have left the “just right” zone.

. . . I discussed what I call the Goldilocks price zone for oil, natural gas, and coal, a zone in which prices are “just right” — high enough to reward producers but low enough to entice consumers. Ever since the start of the fossil fuel era, such a zone has existed. Sometimes price boundaries were transgressed on the upside, sometimes the downside, but it was always possible to revert to the zone. 

But now, for oil, the Goldilocks zone has ceased to exist. 

Price of Oil

One of the most startling developments of the last twelve months was the drop in the price of oil during the second half of 2014 from around $110 to $55 per barrel. As we have discussed elsewhere the proximate cause of this event was likely a decision by OPEC to maintain high production rates in order to drive new producers, particularly U.S. tight oil, out of the market. But there are reasons to believe that there are longer-term reasons for the drop in the price of oil. Most analysts would argue on the following lines:

  1. It is getting more and more expensive to find and extract new sources of oil.
  2. Hence the price of oil will go up.
  3. General inflation of prices will follow on.

However, another line of reasoning would be:

  1. High oil prices cause an economic slowdown.
  2. This leads to increased unemployment and/or low wages.
  3. Hence demand for oil drops.
  4. Hence the price of oil drops.

When we look at what is going on in the world’s economies the second explanation seems to be the better one.

We have seen that that Robert Samuelson faced a dilemma with regard to the productivity of world economies. His puzzlement may lie in the fact that he has failed to recognize the role of diminishing affordable energy supplies. Indeed it would seem as if a structural weakness of most economic analyses is that they rarely recognize the physical limits of the world. For example, they may say, “If prices go up then supply will increase correspondingly”. This may be true for manufactured goods but it is not true for natural resources such as oil. Although there is plenty of oil in the ground its ERoEI is inexorably falling — the supply cannot go up to match prices.

The Red Queen and the Age of Limits

Red Queen in Alice in Wonderland

Alice and the Red Queen

We started this post by describing the with the Red Queen Dilemma  — Alice and the Red Queen need to run faster and faster just to stay in one place. This trope has been used to explain the nature of evolution. In a constantly changing environment all species must adapt just in order to stay in place. If they do not then they eventually disappear. Such a concept is well understood by most of us in the context of endless progress. Businesses and organizations of all types know that they have to develop new products and systems just to keep up. These advances create the productivity gains of recent years — the gains that are, as Samuelson points out, no longer being repeated.

The Red Queen principle applies equally well to the Age of Limits. But successful adaptation will require an understanding that resources are declining and that successful organizations will have to learn to work in a much simpler world than the one we live in now. Failure to do so will lead to their eventual failure.

l’Optimise

Voltaire

Voltaire

The above sub-title comes from Voltaire’s book Candide, a work that I have referred to in previous posts. His satirical writing can be seen as a work of optimism in spite of all the bad things that take place. Therefore, where possible, I will end these posts with a few words of optimism. (I started doing this in Denying Blackbeard — Part 2 and Renaissance Man and Climate Change.) In this post I offer the following thought.

Our economies and societies are going to become much simpler. This is not a choice.

Books

Our books, published by Elsevier, include the following titles.

Books from Sutton Technical Books

16. Greek Gifts

Engineering in an Age of Limits

Post #16. Greek Gifts

Trojan Horse
Engineers did not invent the steam engine — the steam engine invented them.
What will a post-oil society invent?

This is the sixteenth post in the series “Engineering in an Age of Limits”. We are facing limits in natural resources, particularly oil; our finances (money seems to be increasingly disconnected from actual goods and services); and the environment as we continue to dump waste products into the air, the sea and on to land.

We are also facing a transition as the Oil Age comes to an end. This is not the first time that society has faced such a shift. At the beginning of the 18th century the principal source of energy in northern Europe was wood. However the forests were mostly depleted so a new source of energy, coal, had to be developed and exploited. The extraction of coal from underground mines posed new technical challenges particularly with regard to removing the water that flooded those mines. So new technologies, particularly the steam engine, had to be developed. Necessity was indeed the mother of invention. These technological developments led to many changes in society, including the creation of the profession of engineering. The transitions that we are currently experiencing as we look for alternatives to oil are likely to generate equally profound paradigm shifts.

In this blog we consider two questions:

  1. What new paradigms, new ways of looking at the world, will develop, analogous to the development of engineering in the early 18th century; and
  2. How can engineers and other technical professionals help navigate the troubled waters that we are entering?

These posts are published at our Welcome page. We also have a LinkedIn forum that you are welcome to join. For a complete list of posts to do with the Age of Limits please visit our . Thank you.

Unpayable Debt

Greek-Flag-1
Much of the news of late has been to do with the the financial crisis in Greece. There are many theories and explanations as to the causes of this crisis. Most of these theories look at economic and financial issues such as over-generous pension programs, a failure to collect taxes from the wealthy citizens, the flight of savings to other countries and the strait-jacket effect of a single currency among different economies. But, as we think about the Age of Limits and its impact on the engineering professions, there are at least two deeper lessons that we can derive from the suffering and confusion that we witness in today’s Greece. Indeed, the proverb “Beware of Greeks bearing Gifts” comes to mind (the phrase derives from Virgil’s story of the Trojan Horse.) What is going on in Greece now may provide guidance to engineers as they navigate the upcoming Age of Limits.

A fundamental theme of this series of posts is that our society is running into physical limits in all areas: resources, environmental and financial. And this seems to be what is going on in Greece — a nation that has accumulated enormous debts but one that has very little in the way of natural or industrial resources. Normally these debts would be paid off, or at least deferred, through growth in the economy. But if physical economic growth has not only stopped and is unlikely to return then the problems cannot be solved by taking on more debt because there is no way that the new interest payments can be made. Supporting this point of view, Gail Tverberg suggests that the European countries with the greatest economic problems (Cyprus, Greece, Portugal, Italy, Spain and Ireland) along with Puerto Rico in the western hemisphere all have the greatest percentage of their energy supplied by oil.

If this were just a Greek problem then we could probably find some way of finessing it. But most other nations have also taken on enormous debt burdens yet few of them are likely to see much physical growth any more. Hence the confusion and hardship that we are seeing now in Greece is likely to repeat itself in those other nations in years to come. Government and financial leaders will try to solve these problems with financial tools of one sort or another — not realizing that none of their actions are likely to make much difference, except to pile on ever-greater burdens of unpayable interest payments associated with new debt. Indeed, their actions will probably make the problems worse by adding unnecessary and confusing complexity.

This is the first gift that the Greeks bring us: what we are seeing in Greece is not just “the end of growth” — we are witnessing the “start of shrinkage”. More on this in future posts — suffice to say for now that this is a very scary observation.

Complexity

The physical limits that we face as a result of the upcoming Age of Limits is a theme that we will keep coming back to. But there is another lesson that the Greeks give us and that is the diminishing returns to do with increased complexity. And it is a lesson that engineers and technical professionals would do well to heed.

 The European Union (EU) is bureaucratic — it issues thousands of rules in all walks of life. The reason for this is not a casual byproduct of the Union — it is the basis of its existence. By forcing the different nations to conform to the rules the people will become more unified (it is hoped).

Straight banana
Most of the rules can probably be justified on their own merits. But some, such as the one that led to the infamous “Straight Banana” controversy, are questionable. In this case Commission Regulation Number 2257/94 stipulated that bananas must be “free from abnormal curvature of the fingers”. This rule led to many jokes about grocery stores being forced to sell only straight bananas. But jokes are funny because they reflect real life. In this case it would, of course, be much simpler to let grocers offer different types of banana and let the customers choose those that they prefer. But allowing the free market to operate in this manner is against the very philosophy of the EU. The burden on society generated by EU rules is not an accidental byproduct — it is the very raison d’être for the EU’s existence.

Not only does a plethora of rules create the occasional absurdity, at a deeper level they create huge amount of complexity. This complexity then creates two problems. First is the direct cost. It takes money to hire the people who write and enforce the rules. And that money has to be paid by taxes. In addition, the companies that are subject to all the rules and regulations have to hire their own people to make sure that they are in compliance. And they have to modify their facilities in order to conform to the rules. None of this investment is subject to financial scrutiny: rules are rules and they must be followed — arguments to do with common sense and return on investment receive very little attention. Yet the taxes and other costs to do with increased rule-making must come, at the end of the day, from productive activities to do with industry and agriculture. If the rules have the effect of killing industry, or driving it to a less restrictive location, then the whole system will starve to death.

So, the reaction of industrial managers tends to be, “Why bother?” Why go to all the trouble of building a chemical plant or refinery when the rules are so onerous? In my post A Magnificent Navy on Land I quote from an open letter from Jim Ratcliffe, Chairman of INEOS, to Mr. Barroso of the European Commission.

I wish to express my deepest concerns about the future of the European chemical industry. Sadly, I predict that much of it will face closure within the next 10 years . . .

In the UK we have seen 22 chemical plant closures since 2009 and no new builds . . .

I can see green taxes, I can see no shale gas, I can see closure of nuclear, I can see manufacturing being driven away.

Hence the physical economy continues to decline and debts that paid off because the rules contribute little to true growth.

But a second problem to do with increased complexity, and one that gets less attention, is that no one can really understand or manage complex systems. People operate in their professional silos; they do not understand how their actions are affecting the overall system. This is not because these people are foolish or willfully ignorant — it is because the systems that they supposedly manage are so complex that they cannot be understood by any human being.

An example was provided this week at the Resource Crisis site. In it the author, Ugo Bardi, reported on a conference to do with food supply that he attended. He states,

The food supply system is a devilishly complex system and it involves a series of cross linked subsystems interacting with each other. 

He notes that each person at the conference was generally very knowledgeable about one area such as agriculture or food distribution or climate change or resource limits. But no one understood all of these issues, nor how they might interact with one another. Instead each person pursues a process of linearization whereby making one change will have a desired effect without considering its systems impact. In particular, they do not give consideration to the possibility that their particular solution might actually make overall conditions worse.

In his book The Collapse of Complex Societies Joseph Tainter states that the response of many (not all) societies to problems is to increase complexity. This process continues until the costs of incremental complexity are greater than the commensurate benefits. At that point collapse starts. He makes the following points:

  1. Growth comes from increased complexity because it is useful in solving problems;
  2. Increased growth and increased energy use go hand in hand — they cannot be separated;
  3. Complexity is not free — there is always a cost;
  4. When the cost/benefit crosses a threshold decline starts; and
  5. Decline is associated with increased simplification (which is generally involuntary).

In other words societies initially respond to problems by adding complexity. However there is a cost associated with this complexity. The costs rise but the returns become increasingly marginal. Eventually a tipping point is reached and the society collapses to a much simpler state.

There are reasons to believe that our society may be at such a point because the supply of available energy is decreasing (point #2 above).

The Greek Gift

At the start of this essay we alluded to the gift that the Greeks brought. The Greeks (actually the Achaeans) placed a wooden horse at the gates of Troy. The Trojans foolishly dragged that horse into their city, whereupon Greek soldiers leaped from the belly of the horse and conquered Troy.

But in our situation, if we look more deeply into what is going on in Greece (and many other highly indebted nations), there are useful if difficult lessons to be learned, particularly if we understand that the issues go beyond day to day economics and politics. Once we realize that our problems are caused by resource and environmental limits that prevent the creation of additional complexity then we may be able to work toward solutions, even though those solutions could well result in a conscious decision to simplify and therefore shrink our industrial systems.

l’Optimise

Voltaire

Voltaire

The above sub-title comes from Voltaire’s book Candide, a work that I have referred to in previous posts. His satirical writing can be seen as a work of optimism in spite of all the bad things that take place. Therefore, where possible, I will end these posts with a few words of optimism. (I started doing this in Denying Blackbeard — Part 2 and Renaissance Man and Climate Change.) In this post I offer the following thought.

Our industrial and management systems are  complex. A return to simplicity will occur. Those organizations that wish to achieve high levels of safety and profitability in the new world of an Age of Limits will intentionally seek to make their systems simpler.

Books

Our books, published by Elsevier, include the following titles.

Books from Sutton Technical Books

8. A Journey Part 4 – Inconvenient Truths

Engineering in an Age of Limits
A Journey Part 4  Incovenient Truths

Inconvenient Truth

Inconvenient Truth

Engineers did not invent the steam engine — the steam engine invented them.
What will a post-oil society invent?

This is the eighth post in the series “Engineering in an Age of Limits”. We are facing limits in natural resources, particularly oil; our finances (money seems to be increasingly disconnected from actual goods and services); and the environment as we continue to dump waste products into the air, the sea and on to land.

We are also facing a transition as the Oil Age comes to an end. This is not the first time that society has faced such a shift. At the beginning of the 18th century the principal source of energy in northern Europe was wood. However the forests were mostly depleted so a new source of energy, coal, had to be developed and exploited. The extraction of coal from underground mines posed new technical challenges particularly with regard to removing the water that flooded those mines. So new technologies, particularly the steam engine, had to be developed. Necessity was indeed the mother of invention. These technological developments led to many changes in society, including the creation of the profession of engineering. The transitions that we are currently experiencing as we look for alternatives to oil are likely to generate equally profound paradigm shifts.

In this blog we consider two questions:

  1. What new paradigms, new ways of looking at the world, will develop, analogous to the development of engineering in the early 18th century? and
  2. How can engineers and other technical professionals help navigate the troubled waters that we are entering?

These posts are published at our blog site. We also have a LinkedIn forum that you are welcome to join.

Previous Posts

The posts in this blog series so far along with those planned for the near future are:

  1. Reverse Engineering
  2. Peak Forests
  3. The Mechanical World View
  4. Four Strands
  5. A Journey Part 1 — Twilight
  6. A Journey Part 2— Hubbert
  7. A Journey Part 3 — A Predicament
  8. A Journey Part 4 — Inconvenient Truths (this one)

We have also, during the course of the last two years, published other posts to do with these topics. They are listed at our Welcome page.

The last three posts have described the start of my personal journey into understanding our Age of Limits. They have mostly discussed the limits to do with energy resources: wood, coal and oil. But there are two other types of limit to be considered: environmental and economic (financial).

My own journey regarding understanding the Age of Limits has been mostly on the Resource Depletion road. But many others come to this topic through an understanding of changes in the environment, particularly climate change, a topic that we discuss in the remainder of this post.

Climate Change

Al Gore

Al Gore

For myself and many others the 2006 video An Inconvenient Truth featuring Vice President Al Gore was a major step in developing an understanding of climate change and the impact that it could have. Since then there have been any number of reports and studies full of complex charts, graphs and tables, all showing that the earth’s atmosphere is indeed getting warmer. There is no point in me trying to reproduce those here. However the following does seem to be a sensible summary as to what is going on.

  • Carbon dioxide (CO2) is a greenhouse gas — it helps keep the planet warm. If it were not present in the atmosphere we would all freeze to death.
  • Since the start of the Industrial Revolution (Thomas Newcomen’s steam engine in 1712) we have steadily increased the concentration of CO2 in the atmosphere through the burning of fossil fuels — first coal and then oil and gas. The earth’s temperature has risen correspondingly.
  • This temperature increase is being exacerbated by increasing methane emissions (methane is a very potent greenhouse gas) caused by a positive feedback loop.
  • We are already approaching a 2°C temperature increase.
  • We are on track for 3°C by the year 2030, i.e., within the lifetimes of most people reading this blog.
  • If the temperature rises by 3°C bad things happen: sea levels rise substantially, crop yields decline and droughts will increase in severity and frequency.
  • If the temperature rises by 4°C then the consequences become truly scary. Some analysts say that we are headed toward human extinction. Although such projections are, in my judgment, an exaggeration it is hard to deny that we are moving into very difficult times.
  • So far our response to this looming crisis has been tepid, to say the least — CO2 levels continue to increase and very little top-down concerted action has been taken.

The above conclusions are is well supported by thorough research and climate modeling. So why is there so much controversy? I suggest that the fundamental issue is not do with the science involved but with human emotions and feelings. This is important because, if engineers are to help understand the transitions that we are undergoing then they need to understand that simply presenting hard data and calculations are not enough when it comes to changing people’s behavior. We need to understand psychology and sociology.

Cognitive Dissonance

Cognitive Dissonance

When someone is confronted with convincing information that conflicts with their beliefs then, if they do not change those beliefs, they will undergo what is known as cognitive dissonance.

Personal Experience

For many people the most obvious cognitive dissonance to do with climate change comes from  a perceived conflict between what they read about (mostly on the Internet) and their daily experiences. Someone may take the family to the beach for a vacation. When he gets there the ocean seems to be pretty much in the same place as it always has been — what happened to catastrophic sea rise? Or he may be a keen gardener and note that that last frost date seems to be about the same as it always has been. This person’s daily experiences do not align with what he is reading.

A Truly Inconvenient Truth

I have already noted that the publication of Al Gore’s video An Inconvenient Truth was a starting point for myself and many others in understanding what climate change was and the impact that it could have on all of us. Unfortunately Al Gore’s lifestyle does not match his message. He lives in a large air-conditioned mansion (and owns other properties), flies around the world in jet airplanes and eats a high meat diet. If he had really wanted to get his message across Gore would have moved to a small home without air conditioning, cut back on long distance travel (and then only by train) and eaten a mostly vegetarian diet. Then his message would have been much more convincing. (This comment is not partisan — there are many people across the political spectrum who fail to walk their talk.)

By living a life that is not in alignment with his stated message Gore, and the many people like him, are creating a dissonance in their listeners and supporters.

Harsh Reality

Some people may decide not to accept arguments to do with climate change (and other Age of Limits issues) because they recognize that doing so will force them to dramatically downsize their high consumption life style, and they prefer not to think about that. If their future is one of say not driving an automobile, growing their own food and living in a non air-conditioned house then that person can choose to deny that future by claiming loudlythat the climate really is not changing, or, if it is, the cause is not man-made so we need do nothing about it.

The California Snowpack

California Snowpack 2015

California Snowpack 2015

The “Seeing is Believing” response can work in the other direction. And, for many Americans, the drought in southern California is providing an unpleasant glimpse of the future and the reality of global warming. The following is from an April 2015 report published by the California Department of Water Resources.

Sierra Nevada Snowpack Is Virtually Gone; Water Content Now Is Only 5 Percent of Historic Average, Lowest Since 1950

SACRAMENTO – The California Department of Water Resources (DWR) found no snow whatsoever today during its manual survey for the media at 6,800 feet in the Sierra Nevada. This was the first time in 75 years of early-April measurements at the Phillips snow course that no snow was found there.

On a personal note I might add that I work with engineers and risk analysts in the State of California. They tend to take the long view to do with most problems, they understand the nature of risk — so they are the opposite of alarmist by nature. But the current water situation in their state really does worry them.

A view of the Jaguari dam station, part of the Cantareira reservoir, with record low water levels in Braganca Paulista, Sao Paulo state, in this February 20, 2014 file photo. This year saw the driest summer on record in Sao Paulo state, raising the specter of a water shortage in a country with the world's largest fresh-water reserves. REUTERS/Paulo Whitaker

Cantareira Reservoir, Brazil

It is probable that, in future years, we will see more and more situations such as that in California, i.e., increasing evidence that the climate is changing rapidly, and generally not for the better. For example, on October 24th 2014, Reuters reported from São Paulo, Brazil, “South America’s biggest and wealthiest city may run out of water by mid-November if it doesn’t rain soon . . .  [it] is suffering its worst drought in at least 80 years, with key reservoirs that supply the city dried up after an unusually dry year.” The dramatic reduction in rainfall is attributed to deforestation in the area.

With reference to the denial response, Paul Gilding, an Australian environmentalist states that “the lack of a serious Brazilian response reinforces to me that we’re not going to respond to the big global issues until they hit the economy. It’s hard to imagine a stronger example than a city of 20 million people running out of water. Yet despite the clear threat, the main response is ‘we hope it rains.’ Why such denial? Because the implications of acceptance are so significant, and we know in our hearts there’s no going back once you end denial. It would demand that the country face up to the urgency of reversing rather than slowing deforestation.”

It has even been suggested by many reporters that the lack of rain in the Middle East for the last four years is a root cause of the wars and violence in nations such as Syria.

Conclusions

One of the goals of this series of posts is to think through the role of engineers in response to the approaching Age of Limits. The emotional reaction to the evidence for global warming shows that a dispassionate presentation of the facts is insufficient; discussions have to address emotions such as anxiety and hope. As people are faced with evidence that these changes are taking place they will struggle more and more with cognitive dissonance — discomfort experienced by an individual who is confronted by new information that conflicts with existing beliefs, ideas, or values.

Engineers tend to be rational and data-driven — they will go where the numbers take them. Therefore they can contribute mightily to the discussions to do with environmental issues simply by collecting and presenting the facts in a calm and dispassionate manner. But it does not stop there — they have to understand that, for most people, the changes posed by the Age of Limits are frightening and so they will do what they can to suppress or ignore the message. And even if they do accept the scientific predictions to do with these issues they could easily ask, “What can one person do? Why bother?”

If engineers and technical professionals are to communicate with the general public they will have to be sensitive to these emotional responses.

 

7. A Journey Part 3 – A Predicament

Engineering in an Age of Limits
Post #7. A Journey Part 3 – A Predicament

Predicament

Engineers did not invent the steam engine — the steam engine invented them.
What will a post-oil society invent?

This is the seventh post in the series “Engineering in an Age of Limits”. We are facing limits in natural resources, particularly oil; our finances (money seems to be increasingly disconnected from actual goods and services); and the environment as we continue to dump waste products into the air, the sea and on to land.

We are also facing a transition as the Oil Age comes to an end. This is not the first time that society has faced such a shift. At the beginning of the 18th century the principal source of energy in northern Europe was wood. However the forests were mostly depleted so a new source of energy, coal, had to be developed and exploited. The extraction of coal from underground mines posed new technical challenges particularly with regard to removing the water that flooded those mines. So new technologies, particularly the steam engine, had to be developed. Necessity was indeed the mother of invention. These technological developments led to many changes in society, including the creation of the profession of engineering. The transitions that we are currently experiencing as we look for alternatives to oil are likely to generate equally profound paradigm shifts.

In this blog we consider two questions:

  1. What new paradigms, new ways of looking at the world, will develop, analogous to the development of engineering in the early 18th century? and
  2. How can engineers and other technical professionals help navigate the troubled waters that we are entering?

These posts are published at our blog site. We also have a LinkedIn forum that you are welcome to join.

Previous Posts

The posts in this series so far are:

  1. Reverse Engineering
  2. Peak Forests
  3. The Mechanical World View
  4. Four Strands
  5. A Journey Part 1 — Twilight
  6. A Journey Part 2— Hubbert
  7. A Journey Part 3 — A Predicament (this one)

We have also, during the course of the last two years, published other posts to do with these topics. They are listed at our Welcome page.

Authors and Publications

In the last two posts I discussed two of the authors — Matt Simmons and M. King Hubbert — who helped form my early thinking on what I now refer to as the Age of Limits. In this current post I describe very briefly some of the other events and authors who advanced my subsequent understanding regarding the Age of Limits. Of course, this list is not complete — I will have occasion to cite other writers in subsequent posts.

Deepwater Project

Petronas Towers

Petronas Towers

I first started looking at Peak Oil issues when I was working for a large engineering company in Kuala Lumpur, Malaysia. I was part of a team that was designing an offshore oil platform to be located in deep water (about 1000 meters) in a remote part of Malaysia. Like most technical people I was impressed and fascinated by the technical challenges that the project posed. But, as I started reading authors such as Simmons and Hubbert I did wonder at the amount of effort and money that was being spent to find and extract the oil from this remote location. Why was this effort necessary?

I worked on another project at about the same time. All of the project team members were given T-shirts on which was imprinted the words, “Mooring Water Depth Record – 7200 ft”. This was not the first time that I had worked on record depth project — there seemed to be a pattern here — the fact that so many projects were to do with production of oil at record depths suggested that the easy oil was gone.

Projects such as these were my introduction to the concept of Energy Returned on Energy Invested (ERoEI) — a topic discussed in Nine Pounds of Gold.

The Oil Drum

Oil Drum logo

Much of our understanding of peak oil issues was developed by oil industry experts (particularly retired geologists) who were not directly employed by the industry. These experts applied their expertise to understanding just what was going on. And, being independent, they were free to come up with unappetizing conclusions. Much of their work was published at the Oil Drum web site. That site has since closed down (although past posts are still available) but it was instrumental in helping technical professionals such as myself develop an understanding of peak oil issues.

ASPO Conference

Association for the Study of Peak Oil

Not long after returning from Malaysia I attended a two day conference in Washington, D.C. in 2011 organized by ASPO (the Association for the Study of Peak Oil). The conference was well organized and the speakers were both interesting and informative. But what did make an impression on me was the small number of people who take an interest in these issues, an impression that has stayed with me since. There simply aren’t all that many people involved in the peak oil movement.

The Archdruid Report

John Michael Greer

John Michael Greer

Almost every week since the year 2006 John Michael Greer has published a blog post called The Archdruid Report. His writing covers a wide range of topics — I will have occasion to refer to his insights in future posts. Because of the scope of his writings it is difficult to summarize them in just a few words, but the following ideas are central to his thinking.

  • No solution — predicament
  • No brighter future
  • Dark Ages
  • Green Wizards
  • Personal response
  • Catabolic collapse

In this post I will pick on just one of those topics: Greer’s insistence that we are facing not problems but predicaments. He says that the society that we have developed over the last 300 years is utterly dependent on the availability of fossil fuels — first coal then oil. As the reserves of these fuels decline we will be faced with wrenching changes whether we like it or not. We do not know what the society of the future will look like but we do know that we cannot return to the days of prosperity funded by abundant fossil fuels.

This distinction between predicaments and problems is one that engineers in particular do not easily accept. Their culture is one of solving problems, not adjusting to the consequences of predicaments.

Resource Insights

Kurt Cobb

Kurt Cobb

People tend to come at Age of Limit issues from one of three directions: resource decline, environmental issues or financial limits.

In his weekly post at Resource Insights Kurt Cobb discusses all three of these strands. I have found his analyses of government data and forecasts to be particularly useful. For example, at the post The one chart about oil’s future everyone should see he presents the following chart taken from a presentation by Glen Sweetman of the U.S. Energy Information Administration (EIA). Cobb states,

What Sweetnam’s chart tells us is that we must find and bring into production the equivalent of five new Saudi Arabias between now and 2030 in order to meet expected demand even if the volume of tight oil reaches its maximum projected output.

World’s liquid fuel supply

Obviously there are not “five new Saudi Arabias” out there. Official information from the United States government tells us so. And making up for the identified shortages by the year 2030 is not going to happen.

Our Finite World

Gail Tverberg

Gail Tverberg

One of the Oil Drum writers was the actuary Gail Tverberg. After The Oil Drum site shut down she continued to publish at her own site — Our Finite World.

Tverberg focuses on the financial aspects of the Age of Limits, particularly the role of debt. Financial topics are probably the area that engineers feel least comfortable with. The following quotation from one of her recent posts is representative.

. . . economic growth eventually runs into limits. Many people have assumed that these limits would be marked by high prices and excessive demand for goods. In my view, the issue is precisely the opposite one: Limits to growth are instead marked by low prices and inadequate demand. Common workers can no longer afford to buy the goods and services that the economy produces, because of inadequate wage growth. The price of all commodities drops, because of lower demand by workers. Furthermore, investors can no longer find investments that provide an adequate return on capital, because prices for finished goods are pulled down by the low demand of workers with inadequate wages.

Peak Prosperity

Chris Martenson

Chris Martenson

Chris Martenson at Peak Prosperity provides discussion and advice to do with upcoming crises. Some of the material is viewable by subscription only. However the free crash course provides a thorough and clear explanation as to the changes that are going on. The following is from the web site.

The Crash Course has provided millions of viewers with the context for the massive changes now underway, as economic growth as we’ve known it is ending due to depleting resources.

The course is organized into the following twenty six video segments that total around two hours of viewing time — two hours very sell spent.

  1. Three Beliefs
  2. Three “E”s
  3. Exponential Growth
  4. Compounding is the Problem
  5. Growth vs. Prosperity
  6. What is Money?
  7. Money Creation: Banks
  8. Money Creation: The Fed
  9. A Brief History of US Money
  10. Quantitative Easing (“QE”)
  11. Inflation
  12. How Much Is A Trillion?
  13. Debt
  14. Assets & Liabilities
  15. Demographics
  16. A National Failure To Save & Invest
  17. Bubbles
  18. Fuzzy Numbers
  19. Energy Economics
  20. Peak Cheap Oil
  21. Shale Oil
  22. Energy & The Economy
  23. The Environment: Depleting Resources
  24. The Environment: Increasing Waste
  25. Future Shock
  26. What Should I Do?

Post Carbon Institute

Richard Heinberg

Richard Heinberg

Richard Heinberg, a Senior Fellow-in-Residence of the Post Carbon Institute, is the author of twelve books on society’s current energy and environmental sustainability crisis. Titles include the following:

  • Afterburn: Society Beyond Fossil Fuels (2015)
  • Snake Oil: How Fracking’s False Promise of Plenty Imperils Our Future (2013)
  • The End of Growth: Adapting the Our New Economic Reality (2011)
  • The Post Carbon Reader: Managing the 21st Century’s Sustainability Crises (2010; co-editor)
  • Blackout: Coal, Climate, and the Last Energy Crisis (2009)
  • Peak Everything: Waking Up to the Century of Declines (2007)
  • The Oil Depletion Protocol: A Plan to Avert Oil Wars, Terrorism & Economic Collapse (2006)
  • Powerdown: Options & Actions for a Post-Carbon World (2004)
  • The Party’s Over: Oil, War & the Fate of Industrial Societies (2003)

His thorough research provides a well-informed basis for discussions to do with the Age of Limits.

Conclusions

In the last three posts I have listed some of the writers who have influenced my thinking on Age of Limits issues. Although there are differences of opinion between them what really strikes me is the consistency between them and the thoroughness with which they analyze these issues. They handle what could be very emotional topics rationally and carefully, and with little hyperbole

It can be seen that my education to do with what I now refer to as the Age of Limits came out of my experiences in the oil industry and from reading about Peak Oil (a misleading phrase that I no longer use). Other people approach these issues from either an environmental or financial background. We will discuss these topics in the future posts.

6. A Journey Part 2 – Hubbert

Engineering in an Age of Limits
Post #6. A Journey Part 2 – Hubbert

M. King Hubbert and Peak Oil

M. King Hubbert

Engineers did not invent the steam engine — the steam engine invented them.
What will a post-oil society invent?

This is the sixth post in the series “Engineering in an Age of Limits”. We are facing limits in natural resources, particularly oil; there are limits to our finances (money seems to be increasingly disconnected from actual goods and services); and there are limits to how much we can continue dumping waste products into the air, the sea and on to land.

We are also facing a transition as the Oil Age comes to an end. This is not the first time that society has faced such a changeover. At the beginning of the 18th century the principal source of energy in northern Europe was wood. However the forests had been mostly depleted so a new source of energy, coal, had to be developed and exploited. The extraction of coal from underground mines posed new technical challenges particularly with regard to removing the water that flooded those mines. So new technologies, particularly the steam engine, had to be developed. Necessity was indeed the mother of invention. These technological developments led to many changes in society, including the creation of the profession of engineering. The transitions that we are currently experiencing as we look for alternatives to oil are likely to generate equally profound paradigm shifts. How this will impact the engineering profession remains to be seen.

These posts are published at our blog site. We also have a LinkedIn forum that you are welcome to join.

Previous Posts

The posts in this series so far are:

  1. Reverse Engineering
  2. Peak Forests
  3. The Mechanical World View
  4. Four Strands
  5. A Journey — Part 1
  6. A Journey — Part 2 (this one)

We have also, during the course of the last two years, published other posts to do with these topics. They are listed at our Welcome page.

A Journey — Part 1 described my the start of my personal journey into learning about and understanding the Age of Limits. I discussed the following:

  • My decision to to take a Masters Degree in literature. This exposure to different ways of thinking and to different types of technology highlighted the importance of an eclectic approach to the problems that we face.
  • The article I read about ethanol as a fuel. The article noted that what we now refer to as ERoEI (Energy Returned on Energy Invested) of ethanol was low — so low that the use of ethanol really doesn’t seem to make much sense on strictly technical grounds. It is necessary that the resource provides more energy than is used to obtain it. Resource exploitation has to make economic sense as well as technical sense.
  • The posts written by Matt Simmons and his book Twilight in the Desert. They introduced me to the concept that oil is a finite resource and that we are using it up.

I continue my journey with an introduction to M. King Hubbert and his seminal work on the decline of oil reserves.

Like anyone who reads about Peak Oil issues very quickly runs into the name Dr. M. King Hubbert (1903-1989). And rightly so — his early insights into the fundamental problems associated with oil depletion provide the foundation of much of today’s thinking. (In one science fiction story set at a time about three hundred years from now his name is treated as a swear word; where we would say “by God!” the people in the story say, “By Hubbert!”) In the year 1979 Alfred North Whitehead said,

The safest general characterization of the European philosophical tradition is that it consists of a series of footnotes to Plato.

A similar comment can be made about Hubbert — so much of our current discussions to do with resource constraints has its roots in what he wrote over sixty years ago. Most current Peak Oil writings will eventually be considered as being a series of footnotes to Hubbert.

The Age of Happy Motoring

The Age of Happy Motoring

It is also important to understand the culture of the time in which he lived. Oil production was increasing and the Age of Happy Motoring was well underway. Nuclear power was going to be too cheap to meter and no one questioned whether infinite growth on a finite planet made sense. Hubbert was courageous.

The Hubbert Curve

Hubbert Curve

The Hubbert Curve

Born in the year 1903 he was at the peak of his powers in 1956. As a leading scientist employed by one of the world’s largest oil companies he was authoritative and credible. The four pages of citations in his paper confirm his commitment to thorough and professional research. He published many papers to do with oil reserves and the rate at which they decline. But his seminal work was Nuclear Energy and the Fossil Fuels presented at an American Petroleum Institute (API) meeting in San Antonio, Texas in March 1956. It can be downloaded here.

His basic idea — which seems obvious to us sixty years later but which was far from obvious in his time — was that all oil reserves have a finite life and will eventually be depleted. Geologists in his day knew this about individual oil wells, but he scaled up the discussion to consider reserves in much larger regions, such as the States of Texas and Illinois. His insights resulted in the now famous Hubbert Curve. Although Hubbert considered just oil reserves in the United States the principles he used can be applied to any non-renewable resource or to a resource that is depleted more quickly than it can replace itself (such as the forests discussed in Peak Forests). For example Hubbert curves have been developed for coal and for fish stocks in the ocean.

The reason that his paper was so foundational was that it pulled together all the parameters of what is now known as Peak Oil. Key insights included the following:

  • He discussed the issue of fossil fuel production in a global context.
  • He recognized the finite nature of fossil fuel reserves.
  • He developed a generic (Hubbert) curve to show how production of fossil fuels peaks and then declines.
  • He understood the fact that continued exponential growth in a finite world cannot continue.
  • He had a grasp of the social implications of his research.

Analysis of the 1956 Paper

Because of its importance and because many of the issues that he raised are with us still it is worth reading Hubbert’s 1956 paper in detail and analyzing his findings and conclusions.

His paper is in three parts. The first part analyzes the fossil fuel industry of his time (the early 1950s) and provides forecasts as to likely production rates over the next half century. The second part of the paper is to do with the transition that he expected to see from fossil fuels to electricity generated by nuclear power plants. The third part of the paper, an assumption that society will respond to analyses such as his rationally, is implicit in the overall context of his analysis.

Part 1 — Fossil Fuel Reserves

In the first part Dr. Hubbert’s analysis of the fossil fuel industry was profound — the forecasts he made with regard to the future production of oil in the United States were accurate (he also predicted the timing of peak oil production world-wide almost exactly, although his forecasts as to the quantities of oil that would be produced were low, mostly because some major new oil prospects had not yet been discovered in the 1950s.) The following is a quotation from his paper.

The fossil fuels . . .  have all had their origin from plants and animals . . . during the last 500 million years.Therefore, as an essential part of our analysis, we can assume with complete assurance that the industrial exploitation of the fossil fuels will consist in the progressive exhaustion of an initially fixed supply to which there will be no significant additions during the period of our interest.

. . . world production of crude oil increased at a rate of 7 per cent per year, with the output doubling every 10 years.. . . How many periods of doubling can be sustained before the production rate would reach astronomical magnitudes? No finite resource can sustain for longer than a brief period such a rate of growth of production; therefore, although production rates tend initially to increase exponentially, physical limits prevent their continuing to do so. This rapid rate of growth for the production curves make them particularly deceptive with regard to the future length of time for which such production may be sustained. 

The above statements lie at the heart of his thinking: reserves of fossil fuels are finite; they cannot be replaced except over many millions of years. Hubbert also drew a clear distinction between the three kinds of fossil fuel (solid, liquid and gaseous) but did not anticipate any issues to do with moving from one to another.

Part 2 — Nuclear Power

Long-Term Projection

Long-Term Projection

The very title of his paper – Nuclear Energy and the Fossil Fuels – shows Hubbert’s fundamental optimism. He anticipated that society would make a smooth transition from fossil fuels to nuclear power and that economic growth could continue, as shown in the above sketch, which is taken from his paper.

Consequently, the world appears to be on the threshold of an era which in terms of energy consumption will be at least an order of magnitude greater than made possible by fossil fuels.

This prediction missed the mark. Although the nuclear power industry now constitutes an important part of the overall energy mix, the optimism that Dr. Hubbert showed regarding the transition from fossil to nuclear fuels has not occurred in the manner that he anticipated.

First, it turns out that different energy sources are not nearly as fungible as was thought in the 1950s. The world now has close to a billion vehicles (automobiles, trains, airplanes, trucks, ships) that run on fossil fuel. Although we see some attempts to introduce electric cars, the reality is that electricity from nuclear power plants is not a direct replacement for gasoline and other refined products, at least not on a realistic time scale.

The civilian nuclear power industry was just getting started in 1956 with promises of energy that “would be too cheap to meter”. In hindsight it is now evident that Hubbert was too optimistic. Although the nuclear power industry meets a large fraction of the world’s demand for electricity, it has not been the savior that Hubbert anticipated. Costs have been much higher than anticipated, accidents such as Chernobyl and Fukushima-Daiichi have shaken public confidence to do with the safety of the industry and issues to do with the disposal of radioactive waste remain unresolved.

Part 3 — Society’s Response

Throughout his paper lies an unspoken assumption that, when presented with the facts and analyses shown in papers such as his, then we, as a society, will take the appropriate actions. In 1956 there was sufficient time to make the transition from an oil-based society to one that derives most of its energy from nuclear power. We have since learned to be more cynical — people generally do not plan for the medium or long-term future. They look mostly to satisfy their own immediate needs and wishes.

But it does pose as a national problem of primary importance, the necessity . . . of gradually having to compensate for an increasing disparity between the nation’s demands for these fuels and its ability to produce them from naturally occurring . . . petroleum and gas.

We can now see that Hubbert was rather too hopeful, maybe a little naïve. It seems as if he thought that, by merely identify the problem, society would respond appropriately. That did not happen. No serious attempt was made in his day to address resource constraints — little has changed since then.

5. A Journey Part 1 – Twilight

Engineering in an Age of Limits
Post #5. A Journey Part 1 – Twilight

Twilight in the Desert

Engineers did not invent the steam engine — the steam engine invented engineers.
What will a post-oil society invent?

This is the fifth post in the series “Engineering in an Age of Limits”. We are facing limits in natural resources, particularly oil; there are limits to our finances (money seems to be increasingly disconnected from actual goods and services); and there are limits to how much we can continue dumping waste products into the air, the sea and on to land.

We are also facing a transition as the Oil Age comes to an end. This is not the first time that society has faced such a transition. At the beginning of the 18th century the principal source of energy in northern Europe was wood. However the forests were mostly depleted so a new source of energy, coal, had to be developed and exploited. The extraction of coal from underground mines posed new technical challenges particularly with regard to removing the water that flooded those mines. So new technologies, particularly the steam engine, had to be developed. Necessity was indeed the mother of invention. These technological developments led to many changes in society, including the creation of the profession of engineering. The transitions that we are currently experiencing as we look for alternatives to oil are likely to generate equally profound paradigm shifts. How this will impact the engineering profession remains to be seen.

These posts are published at our blog site. We also have a LinkedIn forum that you are welcome to join.

Previous Posts

The posts in this series so far are:

  1. Reverse Engineering
  2. Peak Forests
  3. The Mechanical World View
  4. Four Strands
  5. A Journey, Part 1 (this one)

We have also, during the course of the last two years, published other blogs to do with these topics. They are listed at our Welcome page.

A Personal Journey

The previous posts in this series have introduced the concept of an Age of Limits and they have discussed the development of engineering as a discipline. In future posts we will discuss how engineering is likely to change in the face of the transition we are entering and how engineers can assist with that transition. Obviously this is a journey — no one knows all the answers, or even what the questions are. So I thought that I would talk a little bit about the start of my my own journey and share a few thoughts as to why I find the topic both interesting and important.

I cannot point to a single personal “ah ha” moment when “I got it” — a moment when it became clear to me that infinite growth on a finite plant won’t happen. My understanding has developed gradually, and in fits and starts. Like most engineers, I have confidence in technology and the general concept of “progress”. But that confidence was  shaken by the Fukushima-Daiichi catastrophe that occurred in the year 2010. After that event I recall reading a comment that, “It will take more energy to clean up the waste left by nuclear power plants than they generated in the entirety of their lifetimes”. I don’t know if this statement is literally true, but it is thought-provoking; in order to reap the short-term benefits of our actions, in this case the electricity from nuclear power plants, we leave enormous messes for our children and grandchildren to clean up.

Literature

University of Houston - Clear Lake

University of Houston – Clear Lake

About twenty years ago I decided to work on a Masters Degree in Literature at the University of Houston — Clear Lake. My reason for this decision was simply that it was something that I wanted to do. The degree offered no career benefit and I paid for the classes out of my own pocket. But the decision to pursue liberal arts studies was, I believe, a factor in the Age of Limits thinking that forms the theme of these blog posts.

My thesis was to do with societal changes caused by new technology. The theme was “Literature in the Age of the Internet”. I noted that, up to the year 1439 when Johannes Gutenberg invented the moveable type printing press, text was malleable. The copying of written works was never perfect so the copies of a text would necessarily be different from the original text. But with the introduction of the printing press the concept of an “inerrant text” was introduced. Each copy of a book would be identical to the others made on the same press — errors and all. But the replacement of the letter press with electronic communications means that text is malleable once again. Person A can send an email to Person B, who then changes the original text before forwarding it to Person C. Inerrancy has disappeared. The lesson I take away from these transitions is that there is a strong interconnection between technology and social systems. Examples I have already discussed, or that I will dicuss in future posts include the need for the industrial steam engine, the horse manure crisis of the late 19th century and the abolition of slavery.

My hunch is that, if engineers are to be effective in this new world then they need to be more eclectic than they are now. Two examples illustrate this point. First, even a cursory reading of history shows that societies, nations and empires can and do collapse. There is no guarantee of a brighter and better future. The second example is to do with the power of story-telling, as discussed in the posts That would be telling and How to Read and Why.

Movable Type

Movable Type

When describing Newcomen’s development of a practical steam engine in Reverse Engineering and Peak Forests I noted that he actually combined many types of technology, including boiler design, gasketing for pistons and simple control systems (the operator injecting cold water into the cylinder twelve times a minute). Gutenberg exhibited the same versatility. He had to create a press (based on wine presses) that could apply high pressure to the pages, he had to develop the dies from various types of metal, including lead, antimony and tin. The letters in the press had to be able to stand up to heavy, repeated use. Finally, he had to develop an ink that was thick enough for this new invention.

My guess is that engineers of the future will have to display the same versatility and adaptability. A high degree of specialization will not be valued.

Ethanol as a Fuel

Corn to Ethanol

Corn to Ethanol

The next step in my Age of Limits journey was an article I read in one of the chemical engineering journals (probably Hydrocarbon Processing)Unfortunately I don’t remember the title or date of the article so I cannot give the appropriate credits. But it was probably published in the late 1980s.

The author, a young engineer, was describing the production of ethanol as a fuel from corn (maize). He described the technology of the process and then made a first-pass calculation at the amount of energy needed to make the ethanol. Clearly he was nonplussed to find that there was very little net energy or “energy profit” in the process. It took almost as much energy (supplied mostly by oil) to make the ethanol as the ethanol provided when burned as a fuel. What he had stumbled across is the concept of Energy Returned on Energy Invested (ERoEI) or Net Energy — a concept that is well understood now and that is described in the post Nine Pounds of Gold.

The lesson he taught me was that with any resource it is not enough to ask whether it exists, it is not even enough to ask if the technology exists for extracting that resource. What matters is whether that resource can be extracted profitably. With energy the question is even simpler: does the product, whether it be oil from the ground or ethanol from a factory, delivery substantially more energy than was needed to create it in the first place? If the answer is “No” then the only way that the project can move forward is by being subsidized by the government.

I find that most articles in the media to do with natural resources run on the following lines,

  • We need X (coal, bauxite, oil, iron ore, whatever).
  • We know how to extract X from the earth.
  • So let’s do it.

The above should be rewritten as follows,

  • We need X (coal, bauxite, oil, iron ore, whatever).
  • We know how to extract X from the earth economically.
  • So let’s do it.

Twilight in the Desert

Twilight in the Desert

Twilight in the Desert

The next step in my journey was the discovery of Internet articles written by Matt Simmons (1943-2010). He was head of his own successful investment company, specializing in the oil business. He noted that many of the major oil producing nations did not reveal information to do with their production rates, reserves or decline rates. Or, if they do publish such information, its value is questionable, not least because it is never independently audited. So he spent many weeks in the library of the Society of Petroleum Engineers located in Richardson, Texas reading about 200 technical papers to do with oil product in Saudi Arabia. He came to the conclusion that the production of oil in the kingdom was at or near its peak and that there was little spare capacity.

He summarized his findings in the book Twilight in the Desert, published in the year 2005 — just ten years ago. At the time his findings were both surprising and shocking. The fact that what he said now sounds almost banal shows how much we have progressed in our understanding of the economic availability of finite resources. (Not long before his death in the year 2010 I had the opportunity of meeting Mr. Simmons at a presentation he gave to the Society of Petroleum Engineers. In the few moments that we were together I argued with some of his conclusions. I wish now that I had simply shaken his hand and said, “Mr. Simmons, thank you for the leadership and courage that you shown”.)

There are many videos such as this one showing Simmons giving presentations on the topic of Peak Oil. Since his death considerably more research has gone into understanding the complexities the topic of Peak Oil but it is probably fair to say that his broad conclusions are still valid. The world’s major fields are declining quite rapidly and new sources of oil are technically challenging and much more expensive.

Toward the end of his life Simmons’ credibility was hurt by some of the preposterous claims he made to do with the Macondo spill. And his predictions of $500 per barrel oil have not turned out to be even close to true (probably because he did not grasp the link between oil prices and the overall economy — if the price of oil rises too much the economy goes into recession leading to a fall in the price of oil). But he was a leader in raising awareness of the Peak Oil problem.

He also exhibited an attribute which is going to be important in the future of engineering: imagination. For example, he proposed the following to a Forbes reporter.

  1. Build the world’s biggest windfarm off the windy coast of Maine (where Simmons lived).
  2. Use the electricity generated to desalinate and de-ionize sea water.
  3. Use that water, plus electricity and air, to manufacture ammonia.
  4. Pipe the ammonia to shore and use it to power a new generation of cars.

Is such a project feasible? I haven’t a clue, but I like the style of thinking.

Conclusions

We will continue with a description of my journey in understanding the Age of Limits in the next post. But already a few conclusions can be drawn.

  • In the post Four Strands we noted that people can come to an understanding of the Age of Limits from various points of view, with resources, environment and finance being the most common. My background is mostly to do with Peak Oil.
  • Successful engineers in the future will probably avoid over-specialization; instead they will be adaptable and able to bring different engineering skills together.
  • It will be important to be eclectic and to have a good grasp of non-engineering skills such as literature and history.
  • Imaginative thinking will be very important.

We will continue this journey in the next post in this series.

4. Four Strands

Engineering in an Age of Limits
Post #4. Four Strands

Railroad Switching Yard

Engineers did not invent the steam engine — the steam engine invented engineers.

What will a post-oil society invent?

This is the fourth post in the series “Engineering in an Age of Limits”. We are facing limits in natural resources, particularly oil; there are limits to our finances (money seems to be increasingly disconnected from actual goods and services); and there are limits to how much we can continue dumping waste products into the air, the sea and on to land.

We are also facing a transition as the Oil Age comes to an end. This is not the first time that society has faced such a transition. At the beginning of the 18th century the principal source of energy in northern Europe was wood. However the forests were mostly depleted so a new source of energy, coal, had to be developed and exploited. The extraction of coal from underground mines posed new technical challenges particularly with regard to removing the water that flooded those mines. So new technologies, particularly the steam engine, had to be developed. Necessity was indeed the mother of invention. These technological developments led to many changes in society, including the creation of the profession of engineering. The transitions that we are currently experiencing as we look for alternatives to oil are likely to generate equally profound paradigm shifts. How this will impact the engineering profession remains to be seen.

These posts are published at our blog site. We also have a LinkedIn forum that you are welcome to join.

Previous Posts

The posts in this series so far are:

  1. Reverse Engineering
  2. Peak Forests
  3. The Mechanical World View
  4. Four Strands (this one)

We have also, during the course of the last two years, published other posts to do with these topics. They are listed at our Welcome page.

The Messy World of Real People

Francis Bacon

Francis Bacon

In last week’s post I briefly described the development of the Mechanical World View. Men such as Francis Bacon, René Descartes and Isaac Newton created a model that still provides the mental framework for most of us. Their model was objective (Bacon), mathematical (Descartes) and provided predictable results (Newton). It also provided the intellectual basis for the Industrial Revolution which started in the early 18th century with the development of Thomas Newcomen’s steam engine (described in the post Peak Forests).

The Mechanical World View was enormously successful but it has one very important limit: it cannot effectively describe or predict human behavior whether people are considered as individuals or in groups. Disciplines such as economics and sociology have attempted to build Newtonian-style models that predict how people as individuals behave and how society functions. But these attempts have met with little success. (It is worth noting that Newton himself entertained some rather strange and irrational beliefs.)

Q: Why did God create economists?
A: In order to make weather forecasters look good.

The Four Strands

In this series of posts I try to think through how the discipline of engineering will change in response to the approaching Age of Limits. This means that engineers need to understand that they live of unpredictable human beings who often make foolish or magnificent decisions that make no sense in a Newtonian world.

With regard to the Age of Limits it is tempting for engineers, who tend to be rational and who will go where the numbers take them, to look just at the facts of the situation: resources are dwindling and the environment is being degraded more and more. Therefore we need to find a technical solution to solve these problems. End of discussion.

Not so fast — when discussing the Age of Limits we need to recognize that there are at least four strands to the conversation. The first two — resources and environment — are technical and can be modeled quite accurately. But the other two strands — finance and politics — have to be understood and handled quite differently, not least because they operate on different time scales.

Strand 1 — Resources

The first strand, Resource Limitations, is the easiest for engineers to understand. We extract resources such as oil, iron ore and bauxite from the earth. We then convert those resources to useful products such as gasoline, steel and aluminum. Those resources are finite and eventually become depleted. It is relatively simple to create a Mechanical World View of these resources: where they are, how we extract them and how we process them to make them into useful products. When a resource becomes “exhausted” we stop extracting it from that location. (By “exhausted” we do not mean that the resource disappears, just that it is no longer economic to keep on extracting it.)

Strand 2 — Environment

The second strand, Environmental Limitations, is also fairly easy for engineers to follow, although it is more complex than Resource Limitations. We can create Newtonian-style models to predict how the climate will change in response to increased CO2 concentrations, or how quickly coral reefs will dissolve as the oceans become more acidic. Admittedly, these models are very complex — the earth is a big place and there are many, many variables to consider. Still, we seem to have an understanding as to how the environment is being degraded.

Strand 3 — Finance

The third of the four strands is to do with Finance. Many people, including engineers, tend to follow the logic,

A resource exists; we can use it

They should say,

A resource exists; we can use it only if it makes economic sense.

For example there has been much discussion in the popular press in recent years about “Saudi America”. The basic idea is that the United States has enough oil in its shale and deepwater deposits that there will be no need to continue importing oil from other countries. The catch with many of these articles is that they look only at the amount of oil in the ground and that can be theoretically extracted. They do not consider how much it costs to do so. Let’s say that Saudi oil can currently be produced for $30 per barrel (the actual figures are, of course, highly proprietary). The corresponding cost for shale oil seems to be north of $80 (and rising due to the very fast depletion rates). For new deepwater formations a figure of $130 per barrel seems to be credible. Given these disparities the United States will never be “Saudi America”.

Moreover, the Saudi oil is onshore in relatively shallow wells. If something were to go awry they can quickly correct the problem. With deepwater such is not the case. We are currently recognizing the fifth anniversary of the Deepwater Horizon/Macondo catastrophe. Not only did eleven men die and the nation suffer its worst-ever oil spill, the financial losses were large enough to almost bankrupt BP — one of the largest oil companies in the world.

In recent years the supply of money available in developed economies has grown exponentially as a result of programs such as Quantitative Easing. There has not been a corresponding growth in economic activity or production. And consider the following,

Here’s an astonishing statistic; more than 30pc of all government debt in the eurozone – around €2 trillion of securities in total – is trading on a negative interest rate. (Warner)

Sooner or later the amount of money in circulation has to align with the products and services that can be purchased. How all this will shake out is anyone’s guess, but we cannot detach the world of money from the world of engineering.

Strand 4 — Politics

Many people judge issues not according to the facts (as Francis Bacon would have them do); instead they develop opinions based on their their built-in biases and preferences, thus creating the fourth strand: Politics.

The obvious example here is the politicization of the Global Warming/Climate Change issue, which, at least in the United States, seems to have divided straight down party lines. Given that scientific results always have some ambiguity or inconsistency it is always possible to cherry-pick information to support any point of view that you care to select. People are prejudiced in the full meaning of the word; they “pre-judge”. The normal response to such reactions is to produce reports and computer models that demonstrate that they are wrong. This approach is, to the say the least, likely to be highly counter-productive.

Politics also shows up in a more explicit form. Policies ranging from economic sanctions all the way to all-out war create some obvious dislocations to the supply of fuel and other resources.

Systems Thinking

Each of the above topics — Resources, Environment, Money and Politics — need to be discussed in much greater depth. But they also need to be discussed in the context of one another. For example,

  • The environment is warming because we are burning oil products such as gasoline and diesel. They create putting CO2 that traps solar energy.
  • A decline in oil production will result in lower emissions and so the global warming problem becomes less serious.
  • But — if oil is not available it will be replaced by coal, which creates much more CO2 per unit of energy created. So the global warming problem gets worse.

The above is a trivial example, but it illustrates how important it is not to view each of the four strands in isolation.

What is needed is systems thinking, and this is something that many engineers are good at. And there are, of course, many web sites that attempt to develop a systems way of thinking. They include:

INTJ

As I was wrapping up this post I stumbled across a  fascinating survey result at Tom Murphy’s Do the Math site. It is to do with the Briggs Myers system for categorizing different personalities. The following chart and quotation are taken from his post.

Myers-Briggs-Murphy-1

The result was pretty stunning. Of the 114 responses, site visitors were dominated by INTJ types (43 in number, or 38%), even though this group constitutes about 2–3% of the population. The website appears to be highly selective . . .  If accurate, the implication is that less than 8% of the entire human population is likely receptive to the cautionary message on Peak Prosperity (and by extension, Do the Math—the numbers from which suggest an even smaller number). That’s a small fraction of the population, and likely well short of a “critical mass” for preventive action. So we may be committed to crisis.

This result merits further discussion in future posts. Suffice to say that, if we are to develop a broad-based understanding as to where the engineering profession is going, then publishing analyses and graphs won’t do it — we need much more effective communication strategies.

Incidentally, this is how one site describes INTJs.

With a natural thirst for knowledge that shows itself early in life, INTJs are often given the title of “bookworm” as children. While this may be intended as an insult by their peers, they more than likely identify with it and are even proud of it, greatly enjoying their broad and deep body of knowledge. INTJs enjoy sharing what they know as well, confident in their mastery of their chosen subjects, but owing to their Intuitive (N) and Judging (J) traits, they prefer to design and execute a brilliant plan within their field rather than share opinions on “uninteresting” distractions like gossip.

“You are not entitled to your opinion. You are entitled to your informed opinion. No one is entitled to be ignorant.” Harlan Ellison

I conclude that the most urgent task facing engineers and those that are concerned about our transition to the Age of Limits is to figure out to communicate with others. We do not need more studies or reports — we need to somehow engage people’s attention and to encourage honest discussions that are not pre-judiced. How this might be done we can discuss in future posts. One example has already been provided in That would be telling. We all think in terms of stories — so we should be telling stories, not writing reports (or blog pages). This is one of the many insights of John Michael Greer that I have found so useful; for example in his post The Stories of our Grandchildren.

3. The Mechanical World View

Engineering in an Age of Limits
3. The Mechanical World View

Head-Mechanical-1

Engineers did not invent the steam engine — the steam engine invented engineers.

What will a post-oil society invent?

This is the third post in the series “Engineering in an Age of Limits”. We are facing limits in natural resources, particularly oil; there are limits to our finances (money seems to be increasingly disconnected from actual goods and services); and there are limits to how much we can continue dumping waste products into the air, the sea and on to land.

We are also facing a transition as the Oil Age comes to an end. This is not the first time that society has faced such a transition. At the beginning of the 18th century the principal source of energy in northern Europe was wood. However the forests were mostly depleted so a new source of energy, coal, had to be developed and exploited. The extraction of coal from underground mines posed new technical challenges particularly with regard to removing the water that flooded those mines. So new technologies, particularly the steam engine, had to be developed. Necessity was indeed the mother of invention. These technological developments led to many changes in society, including the creation of the profession of engineering. The transitions that we are currently experiencing as we look for alternatives to oil are likely to generate equally profound paradigm shifts. How this will impact the engineering profession remains to be seen.

These posts are published at our blog site. We also have a LinkedIn forum that you are welcome to join.

Previous Posts

The posts in this series so far are:

  1. Reverse Engineering
  2. Peak Forests
  3. The Mechanical World View (this one)

We have also, during the course of the last two years, published other posts to do with these topics. They are listed at our Welcome page.

From Wood to Coal

Early steam train hauling coal

Early steam train hauling coal

The previous post in this series was entitled Peak Forests. The message of that post was.

  1. In Europe from classical times until the end of the Middle Ages wood was pretty much the only source of external energy. Wood was also used in the fabrication of virtually all equipment, vehicles and agricultural tools.
  2. The wood came from the ancient forests that spread across northern Europe. The wood was used much more quickly than new trees could grow so it was, in effect, a non-renewable resource.
  3. By the end of the seventeenth century many parts of Europe were effectively deforested — a new source of energy was needed. The choice was straightforward — coal was widely available and provided more energy per unit of weight than did wood.
  4. But most coal was located in underground mines which were subject to flooding. Hence a means of pumping the water out was needed.
  5. In response to this need Thomas Newcomen developed the first industrial steam engine. It was crude and inefficient by modern standards, but it worked.
  6. The key point in this sequence is that Newcomen and the men like him did not invent the steam engine for fun (the Greeks had done that two thousand years earlier). They invented their machines in order to meet a specific challenge. And in doing so they happened to invent the profession of engineering.
  7. His invention had enormous unforeseen follow-on effects. For example, the newly mined coal was  denser than wood. Hence it could not be transported in bulk on the unpaved, muddy roads of the time. So they took the newly-invented boiler, put it on a frame, put the frame on wheels, put the wheels on steel rails, and — lo and behold — the railroad, with all its follow-on consequences was invented.

Within a hundred years of Newcomen’s invention the Industrial Revolution was well underway.

The Hubbert Curve

We will have many occasions in this series of posts to discuss in detail the Hubbert Curve, developed by Dr. M. King Hubbert in the year 1956. For now, it is sufficient to say that, although he developed his curve for onshore oil production in the United States, it can be applied to the extraction rate of virtually any natural resource: forest timber, coal, oil, even the fish that can be taken from the ocean. Basically he said that the extraction rate for any newly-discovered resource would follow a profile such as that shown below.

Hubbert Curve

Initially the extraction rate rises steeply, then a peak or plateau is reached, then the extraction rate declines until it reaches a steady level of about 10% of the peak value. Given that all natural resources tend to follow a Hubbert profile there will always be a need to invent new technology to develop new sources of energy. The process of invention did not stop with Newcomen. But the central challenge of our age is that we don’t have an obvious replacement source of energy so the people of the early 18th century had coal, in the first part of the 20th century oil was a natural replacement for coal, but we, in our time, do not know how to complete the following sequence.

Wood → Coal → Oil → ?

There are many suggestions floating around: solar, wind, geothermal, biofuels all come to mind. But none of them show the potential to scale up sufficiently to replace oil and to do so in the time available to us. Consequently we do not appear to have any modern-day Thomas Newcomens to take us to the next stage.

If we cannot find a replacement for oil, then a new way of thinking will be needed and fundamental reorganizations will be called for. Which means that it is useful to look at the way of thinking that developed at the same time as the steam engine, three hundred years ago.

The Mechanical World View

Jacques Turgot

Jacques Turgot

The move from wood to coal as a principal source of energy affected not just technological innovation. It built on and helped create a new way of thinking.

In his book Entropy: Into the Greenhouse World (1989) the author Jeremy Rifkin starts one chapter with an overview of a two-part lecture given by Jacques Turgot in the University of Paris in the year 1750. Turgot argued that history proceeds in a straight line and that each stage of history represents an advance over the previous one. He developed the idea of what we now call “progress”, which is often stated in the form, “I want my children to have a better standard of living than I have”. To quote Rifkin,

Though we are largely unaware of it, much of the way we think, act, and feel can be traced back to the . . . historical paradigm that took shape and form during those centuries of transition. It is ironic indeed that only now as that tapestry begins to fray and unwind is it possible to really see the stuff we and our modern world are made of.

Our current paradigm can be called the Mechanical World View. It is based largely on the writings of three men: Francis Bacon, René Descartes and Isaac Newton. Each one of these gentlemen deserve a post all to themselves. For now we will summarize their works as follows.

  • Bacon (1561-1626) worked out the scientific method — he separated the observer from the observed and thus came up with “objective knowledge”.
  • Descartes (1596-1650) created the mathematical world, the world that engineers inhabit now. In that world everything is completely predictable.
  • Newton (1643-1727) put Descartes’ mathematical principles into action. He created his three laws of motion — laws that accurately described and predicted planetary motions.

To summarize, the Mechanical World View, at least as it described the material universe, was very appealing because it explained the world and it gave results. It provided the basis for never-ending “progress”.

There was one huge limitation in this World View, however. It could not explain the messy, disorganized irrational behavior of human beings. Attempts have been made, with very little success, to incorporate this way of thinking into disciplines such as sociology and economics. But, most of the time, our society is still a mess and we can’t explain what is going on or why people do what they do most of the time.

Also, what the Mechanical World View does not consider is that progress requires ever-increasing quantities of free energy. But, as we hit the Age of Limits, their model of an orderly and progressive universe is no longer working. We are running out of energy supplies that can be extracted economically, we are running out of space (air, land and sea) to dump all our waste and we have an economic system that seems to be increasingly wobbly because money has become detached from underlying material values. And the human side of things, which was always messy and inexplicable, seems to be getting worse.

To summarize: the Mechanical World View worked for three hundred years, but has stopped working for us. Our natural response is to adjust the machinery of our society, for example by making a transition from gasoline-powered to electric cars. But these response aren’t working all that well. We don’t know what to do because we have not yet realized that we cannot solve these new problems with the old solutions. need to replace the Mechanical World View with an Entropic World View.

The Entropic World View

Drought-1

As we enter the Age of Limits the Mechanical World View will no longer hold water. Rather than seeing ourselves as “progressing” in a straight line onward and upward we will need to develop a way of thinking that incorporates an understanding of a world where resources are finite, increasingly expensive and/or inaccessible, and where recycling will be fundamental to our way of life.

As we develop this series of posts (and the book that will come out of them) we will spend some more time trying to understand the decline of the Mechanical World View. But a more positive action is to try to figure out what kind of society will replace what we have now and — more specifically — how the engineering professions will be affected, and how engineers can help make the transition to whatever new ways of thinking may be developing.

What this new way of thinking will look like is anyone’s guess. Could Thomas Newcomen have foreseen the Industrial Revolution as he was tinkering with his steam engine?

But it appears as if we can draw four very tentative conclusions as to where we might be going.

  1. The first is that any activity that draws down our energy supplies will have to be stopped, or at least slowed down. Currently the latest technologies are mostly to do with computer technology: mobile phones, the Internet, tablets are examples. But, as discussed in the The Cloud, these machines consume energy, lots of energy.
  2. The second thought is that engineers in particular can apply rigorous thinking to much of the thoughtless chatter that goes on. For example, people talk about “Energy-Saving Projects”. There are no such things; energy can neither be created nor destroyed — the First Law tells us so. Hence energy cannot be saved. And people talk about “Sustainability”. Nothing is sustainable, entropy always increases — the Second Law tells us so.
  3. The third item to consider is the possibility that somewhere out there is an engineer, a modern-day Thomas Newcomen, developing systems based on an “Entropic World View”. I have absolutely no idea what that invention will look like but I am pretty sure that it will have nothing to do with computers.
  4. The final thought is probably the least palatable. There is no guarantee that we will be able to maintain our current life style in the Age of Limits. History books are full of the corpses of dead nations, empires and good ideas. There is no reason to believe that we are any different. Indeed, given our almost total reliance on declining resources, our impact on the planet and given that the population of the world has increased from about 0.5 billion in Newcomen’s day to 7.5 billion, most of whom eat food that is grown through the use of artificial chemicals made from oil, we can conclude that we are heading into very turbulent waters.

2. Peak Forests

Engineering in an Age of Limits
Part II — Peak Forests

Forest-2

Engineers did not invent the steam engine — the steam engine invented engineers.

What will a post-oil society invent?

This is the second post in the series “Engineering in an Age of Limits”. We are facing limits in natural resources, particularly oil; there are limits to our finances (money has to be based on actual goods and services); and there are limits to how much we can continue dumping waste products in the air, the sea and on land.

This is not the first time that society has faced such a transition. At the beginning of the 18th century the principal source of energy in northern Europe was wood. However the forests had largely been depleted so a transition to a new source of energy, coal, had to be found and exploited. However, the extraction of coal from underground mines posed new technical challenges particularly removing the water that flooded those mines. So new technologies, particularly the steam engine, had to be developed. Necessity was indeed the mother of invention.

These technological changes led to the creation of the profession of engineering. It is suggested in these posts that the transitions that we are currently experiencing could generate equally profound paradigm shifts. How this will impact the engineering profession remains to be seen. 

These posts are published at our blog site. We also have a LinkedIn forum that you are welcome to join.

Previous Posts

The posts in this series so far are:

  1. Reverse Engineering
  2. Peak Forests (this one)

We have also, during the course of the last two years, published other posts to do with these topics. They are all listed at our Welcome page.

The Ancient Forests

Imagine that, two thousand years ago, you could have flown over northern Europe from what is now western Russia, across northern Germany and France, and then over England and Eire. Looking down from the airplane you would have seen one continuous forest with just the occasional scattering of clearings, villages and towns, the occasional small city and a few narrow roads. The light and dark green areas) in the sketch below (Oak Ridge) shows the extent of that primordial forest.

Ancient Forests of Europe

Ancient Forests of Europe

Most of that forest has gone now — were you to make the same airplane ride today you would mostly see fields, towns, large cities and extensive transportation systems. Why? What happened in the last two thousand years to cause such a dramatic change in the landscape? The answer to the above question lies in the nature of the soil and climate. The soil is heavy and the climate is cool and wet. Consequently, even if the trees are cleared it is difficult to plow the soil and thus grow crops.

And then, sometime in the 9th century (a period of time that we ironically refer to as the Dark Ages) they developed the heavy cross plow. This plow was able to turn the heavy soils of northern Europe and thus open up huge areas for cultivation — but first the trees had to be cut down.

Mediaeval Cross Plow

Mediaeval Cross Plow

Deforestation and the subsequent availability of new agricultural land led to substantial population growth and to changes in the way society was organized. For example, the new plow, being much heavier than the plows used for turning the light soils of the Mediterranean lands, needed teams of oxen to pull it. Its use also encouraged the creation of long strip fields. And the surplus food produced meant that more people could move to the towns and work in activities that did not directly contribute toward agriculture.

As can be expected, a vicious cycle ensued, a cycle that is eerily similar to what we are experiencing now (except that, in our case, it is oil that is disappearing, not wood). The forests were cleared, more crops were produced, the population grew, so more land was needed to feed the increased number of people, so more forests were cleared and so on and so on. Eventually, of course, a limit was reached; once the forests had been mostly cleared there was no more new arable land to exploit. In some parts of Europe the forests were mostly gone within just a few hundred years.

The problem with this cycle was not just that society was running out of new available agricultural land, but it was also using up its supply of wood making things. And wood was absolutely crucial to mediaeval civilization — not just as a source of heat, but also as the material of construction for most buildings, all tools and equipment — virtually everything was made by wood, including, of course, the cross plow. Only cutting edges were made of iron. So deforestation created a double edged dilemma: there was no more new arable land and the raw material for equipment, buildings and heat had been depleted to a point of no return. The picture below shows the North York Moors in northern England — an area now regarded as a place of natural beauty. In point of fact, the “natural” beauty of this area is forest, not moorland grazed by sheep.

North York Moors

North York Moors

So the people of the late Middle Ages were faced with a conundrum: there is little new arable land and their vital raw material is disappearing. What do? Their answer, just like ours now, was: Alternative Fuels. By the year 1700 an answer was urgently required.

Coal

In our time there is no shortage of discussion to do with alternative fuels that will be needed to replace our diminishing supplies of oil and gas. Wind, solar and nuclear are all touted as options. When faced with the same dilemma the people of northern Europe had little doubt as to what that replacement fuel was: coal.

Coal was not a new source of fuel; people of the middle ages had been using it for many years as a source of heat for their homes. Most of that coal was “surface coal”, i.e., it was taken from surface seams or from the beaches (sea coal). But there was insufficient surface coal to meet the needs of the developing coal-based economy — hence it became necessary to extract coal from underground mines. But, as already noted, the countries of northern Europe have a wet climate (and a high water table in most places) hence the new coal mines were often flooded. Some means of pumping the water out of the mines was needed. To do this they needed two technological devices. They needed high capacity pumps to remove the water from the mines and they needed engines to power those pumps — neither human nor animal power was sufficient. Hence, necessity being the mother invention, the industrialists of that time had to invent the steam engine.

In our first post in this series we met Thomas Newcomen (1664-1729), a Baptist preacher and iron worker. He developed a steam engine to pump water from the Cornish tin mines around the year 1710; his invention was quickly adopted by the new coal-mining industry. The essential point here is that men such as Newcomen did not invent these machines because they felt like it — actually demonstration steam engines had been invented two thousand years earlier but had never been commercialized. They developed industrial-scale steam engines because the economy of the time needed them. The forests were “past peak”.

The invention of the steam engine had many, many unexpected consequences: some good and some not so good. Taken together these consequences radically changed the nature of society. Examples of these unanticipated changes include the creation of railways and the development of the chemical industry.

Early Steam Train hauling coal

Early Steam Train hauling coal

Considering railways first, prior to the 18th century there had been no need for a highly developed transportation system. Wood was harvested close to where is it was used and, because its density is quite low, it could be carried on carts or the backs of animals. However, once the coals mines were up and running, a much more robust means of transport was needed. The mines were often a long way from the people and industries that used it, it has a high density and the amounts being used were much greater than had been the case previously. Moreover coal could not be carried on carts over the unpaved roads of the time — the wheels of the carts created huge ruts making that form of transportation infeasible. So what was done was to put the newly-invented steam engine on a frame, put that frame on wheels, put those wheels on iron rails and, lo and behold, the railways have been invented. The consequences of that invention were enormous.

Another consequence of Newcomen’s invention was the creation of the chemical industry. At first coal was used primarily for heating, but the hydrocarbon molecules that make up coal are very complex and can be used as the building blocks of many other chemicals.

ERoEI of Tin

Cornish Tin Mine

Cornish Tin Mine

One of the themes that will run through this series of posts is that of Energy Returned on Energy Invested (ERoEI) — sometimes referred to as the Law of Diminishing Returns. (The meaning of ERoEI is explained in the post Nine Pounds of Gold.)

When a new energy source is ready to be exploited (coal in the 17th century, oil in the 20th century) new technology may be needed but that that technology can be quite simple and not too costly. But, as time goes by the resource becomes more difficult to extract and increasingly complex technology is required. After all, why did Newcomen need to invent his steam-powered pump? Tin had been mined in Cornwall since Roman times without the need to advanced technology. The reason was that the easy-to-find and extract tin ores had been worked out, so the miners were having to dig deeper and deeper mines in order to stay in business.

Creative Times

With the invention of the steam engine what we now call the Industrial Revolution was up and running. This video of the Newcomen engine shows just some of the engineering aspects of that the new technology (it does not show how they disposed of the condensate from the steam cylinder). To us the engine looks primitive and inefficient, but consider some of the new challenges that the engineers of that time faced.

  • Since the pump actually does work on its vacuum stroke the maximum distance that it can lift a column of water is 32 feet. They needed to understand the thermodynamic principles behind this limitation.
  • A counterweight is needed to raise the piston (the steam pressure was too low to do this).
  • A control system has to be developed — originally this was totally manual. An operator would open then close the valve that injected water into the cylinder.
  • Gaskets are needed to maintain a seal around the piston heads.

Wood to Coal to Oil to ?

At the head of this post is the following quotation.

Engineers did not invent the steam engine — the steam engine invented engineers.

What will a post-oil society invent?

In the early 18th century the primary energy source for northern Europe (and later many other parts of the world) changed from wood to coal. The next transition, which occurred at the beginning of the 20th century, was from coal to oil. We will look into the nature of that transition and some of its consequences in future posts. And now, in the early years of the 21st century, 300 years after the construction of the first commercial steam engine we are on the cusp of another transition. The Oil Age is coming to an end. What new source(s) of energy will replace oil and how will they affect society in general, and the profession of engineering in particular?