Engineering in an Age of Limits

Discusses the role of engineers as society enters an Age of Limits — particularly with oil supplies.

APEC Blue

Extremely high pollution levels in China

In this week’s Archdruid Report — The Externality Trap, or, How Progress Commits Suicide — one of the commenters, “Stein L”, had the following to say about the Chinese economic miracle.

When hosting the APEC summit in Beijing, Chinese authorities did something they’ve apparently later come to regret. They instituted a ban on manufacturing activity and motoring inside a large radius circle around Beijing, in order to reduce air pollution.

During the conference, the skies above the city were blue, something people hadn’t seen for a long time. The phenomenon was so astonishing that it earned a nick name: APEC Blue. It also raised a clamor for something to be done about the externalities of the Chinese economic “miracle.” APEC Blue brought the cost home to those affected.

We fixate on isolated benefits of technological progress, and fail to see the larger picture. . . The citizens of Beijing had come to see air pollution as something natural, because they so rarely saw a clear blue sky. . . The “smell of money” made them blind to what they were miring themselves in.

The writer is referring to the Asia-Pacific Economic Cooperation summit that was held in Beijing in 2014. By shutting down heavy industry and most road vehicles Beijing’s air was transformed from this,

Beijing-1

to this.

Beijing-2

Most readers probably expect me, at this point, to start discussing environmental issues. And certainly it is becoming increasingly evident that the Chinese authorities are going to have to get to grips with their dreadful pollution problems — which include not just foul air but soil loss and the contamination of fresh water.

But there is a larger point here, one that applies to all of us, and that is to do with the topic of “externalities”. The companies in China that manufacture steel and other industrial goods dump their pollution on to society as a whole — they do not have to include those costs in their financial statements. Yet these costs, sometimes alluded to as “The Tragedy of the Commons”, are very real. Just because no one has to directly account for them does not mean that they can be ignored.

Now let me say immediately that this that is not a uniquely Chinese problem — indeed anyone who drives a car (including myself) is creating an externality; when we buy and operate our cars we do not include the costs to do with the CO2 that we dump into the atmosphere. That cost is not our problem. “They” will come up with a solution.

Green Car

But we can “do our bit”; if  we are responsible citizens we buy a “green car” that do not create emissions. In my neighborhood we have a garage that leases electric cars (they even have “green” parking spots for those cars). Their message is simple and their message is wrong. They are saying, “Use this electric car and you will not create CO2 and other pollutants”. But they don’t ask:

  • What are the emissions of the power plants that generated the electricity that the car uses (after all, the power plant converts hydrocarbon fuel into electricity which is then converted into motion whereas a normal car converts hydrocarbon fuel directly into motion)?
  • What are the emissions associated with smelting the steel and other materials needed to fabricate this car’s special features?
  • What are the emissions and disposal problems associated with the batteries that the car uses?
  • . . . and so on and so on.

A hard analysis of these questions could demonstrate that the nice green car is actually dirtier than a simple, economical gasoline car. Who knows? Has anyone done the analysis? Our thinking stops at the end of the tailpipe.

So what does all of the above have to do with Process Safety Management (PSM) — the topic of this blog series?

I started in the PSM business in its early days: the late 1980s. This was the time when the first regulations on the topic were being hammered out by OSHA and other agencies. (Individual companies had their own PSM programs but there was no industry standard or consensus.) They were exciting times — I recall some of the first conferences were packed out, people were squeezing into the conference rooms to hear those first papers. And I also recall that the very first time that I saw the phrase “Process Safety Management” my immediate and instinctive response was that it should not include the words “Safety”. A well-designed and implemented Process Management program will help improve all facets of an operation: environmental, production, human performance and — incidentally — safety.

25 years later I still adhere to this view: Process Safety Management in not about safety — it’s about management. It is why, throughout my career, when someone has said that I am “in safety” I have pushed back; I am no more (and no less) “in safety” than any other employee. For the same reason I have always refused to have the word ‘Safety’ on my business cards.

My second reaction to the initial PSM standard was that it was about systems. Here are the fourteen elements from the first OSHA standard (they haven’t changed much).

  1. Employee Participation
  2. Process Safety Information
  3. Process Hazards Analysis
  4. Operating Procedures
  5. Training
  6. Contractors
  7. Prestartup Safety Review
  8. Mechanical Integrity
  9. Hot Work
  10. Management of Change
  11. Incident Investigation
  12. Emergency Planning And Response
  13. Compliance Audits
  14. Trade Secrets

Process Safety Management

The second book that I wrote on the topic of PSM was entitled  Process Safety Management (now replaced by the 2nd edition of Process Risk and Reliability Management). In it I wrote,

 

 

The elements of process safety have strong interaction with one another — it is not possible to meet the requirements of one of the elements without considering its effect on the others. The inter-connectedness of the elements can be illustrated by considering the development of an Emergency Response Plan, in which the following sequence of actions—involving seven of the elements may occur.

1. The writing of the Emergency Response Plan (Element 12) requires a knowledge of which hazards have to be addressed.

2. Consequently a Process Hazards Analysis (Element 3) is required to identify the hazards.

3. In order to be able to carry out the hazards analysis, information from sources such as P&IDs and material safety data sheet (MSDS) is needed. Much of this information is included in the Process Safety Information (Element 2) .

4. Once the Emergency Response Plan has been developed, it will be necessary to train everyone in its use (Element 5).

5. The Emergency Response Plan has to be audited on a regular basis (Element 13).

6. During the training process, those being trained will come up with ideas that will improve the quality of the Emergency Response Plan. This is Employee Participation (Element 1).

7. After going through the Management of Change step (Element 10), these ideas can be used to upgrade the emergency manual.

When considered in isolation, many of the elements appear to be the “most important.” For example, Employee Participation could be considered to be the key element because, if the employees do not participate in the process safety program, then that program will not function properly. But Management of Change could be considered the “most important” because the root cause of all incidents is uncontrolled change. On the other hand, all of the elements require a solid base of up-to-date, comprehensive information. Therefore, Process Safety Information is the “most important.” But then it could be argued that Incident Investigation is what really matters because incidents reveal what is really going on in the organization.

The answer, of course, is that none of them are “the most important”. They are all part of a holistic system.

Which brings us back to “APEC Blue”, the skies of Beijing and the issue of externalities.

The whole environmental movement can be viewed as being an attempt to introduce systems thinking into our industrial and commercial processes. Chemical plants, offshore production platforms,  oil refineries and even green cars do not not operate in isolation — each is part of a system, and all of the system costs should be included in their operations.

A similar way of thinking applies to energy production. For example, people point to wind power as being an acceptable alternative to the hydrocarbon fuels (coal and natural gas) that we currently use to create electric power. After all, wind energy is completely clean and it does not require us to create any kind of waste.

But let’s dig down a little. The wind turbines and their support towers have to be manufactured from steel, and that steel has to be smelted and the smelting takes energy — energy that is provided by natural gas in most cases. Going back a step, the steel is made from iron ore which is mined using diesel-powered equipment. And that equipment is also made from steel and other raw materials — all of which take (hydrocarbon) energy for their manufacture. And all these products and intermediate products have to be transported, mostly using diesel-fueled trucks.

Wind-Turbine-1

Even when the wind turbine has been erected and is in operation it requires lubrication (oil), spare parts (steel and other materials) and electronics (rare earths). The point, of course, is that wind energy is not a stand-alone solution — it is part of a bigger system, and should be treated as such. Based on the current industrial infrastructure it is inconceivable that a wind power system could be built and operated using wind power alone.

Wind-Turbine-Components-1

Earlier in this post I noted that Process Safety Management got its start in the late 1980s. So the topic is now at least 25 years old. It is mature; it is no longer exciting. There have been few conceptual leaps in our understanding of PSM in recent years. For example, most of the papers at PSM conferences now discuss detailed issues such as which types of process hazards analysis to use in which circumstances. Ironically, this apparent lack of big changes can be seen as something of a compliment to the PSM community. Although no PSM program is ever complete great strides have been made. We were faced with a problem twenty five years ago and we addressed that problem. Which begs the question as to whether Process Safety Management can make the kind of conceptual leap that it did in the 1980s or whether it will continue to improve only incrementally.

John Michael Greer

John Michael Greer

We started this post by referencing the Archdruid Report — a weekly blog written by John Michael Greer that was started in the year 2006. The failure to understand systems is one of his themes. For example, he writes,

 

 

 

There’s an interesting divergence between the extreme complexity of the predicament that besets contemporary industrial civilization, on the one hand, and the remarkable simplicity of the failures of reasoning that have sent us hurtling face first into that predicament, on the other. Nearly all of those failures share a common root, which is the inability—or at least the unwillingness—of most people in the modern world to pay attention to the natural cussedness of whole systems.

And it is in the arena of systems thinking that I believe that process safety professionals could make a great contribution. As I already showed with regard to the first OSHA standard, systems thinking was baked into the PSM pie from the very beginning. However most of those elements refer to internal processes only — there was, at that time, little consideration of issues “over the fence”.

But this attitude is changing. For example, the Center for Chemical Process Safety (CCPS) has developed an updated list of PSM elements (they have a total of 20). One of them is Stakeholder Outreach. Stakeholders include people living near the facility, stock holders and local businesses. They all want to be associated with a facility that operates safely, cleanly and profitably.

This is good, as far as it goes, but, in its present form, it has three drawbacks. First, the concept of stakeholders it does not exhibit systems thinking. The manager of a process facility may work with people in the community, for example, to ensure that they understand how that facility interacts with their lives (both positive and negative). But the overall system impact of the facility is not considered.

Second, and related to the above comment, stakeholders are generally people who know about the facility and are aware of its benefits and costs. But true systems thinking considers the entire impact of a facility’s operation.

Vineyard-1

Consider the following headline from the Guardian newspaper (2015-02-12).

Climate change is likely to cause decade-long mega-droughts across US south-west and Great Plains.

Not only is the State of California undergoing an unprecedented four year drought — it appears as if that area is heading for a 100 year drought. So we have a situation where a California chemical plant that manufactures fertilizer is generating emissions that are destroying the agricultural business on which it relies. But the system effect is world-wide. Chemical plants in California and steel plants in China each affect the climate of the other country.

The third difficulty to do with the phrase ‘Stakeholder Outreach’ is contained in the very word ‘Outreach’.  The word seems to imply that we are here, doing what we are doing, and that we will choose to talk to other people. In point of fact, every industrial facility is ‘outreaching’ whether it likes it or not. It takes raw material from the earth (either directly or indirectly); it consumes energy and it produces waste products as entropy. Outreach is not a choice.

So this is the opportunity for process safety professionals. Our industrial systems are part of the world biosphere. Just as our “green cars” affect the climate of China, so their industry affects our weather patterns. As Greer says we need people who are willing to pay attention to the natural cussedness of whole systems.

Advertisements

One response to “APEC Blue

  1. Pingback: 12. If wishes were horses . . . | Engineering in an Age of Limits

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: